СЕЛЬСКОХОЗЯЙСТВЕННЫЕ НАУКИ

С.Л. Воробьёва, М.И. Васильева, Д.В. Якимов ФГБОУ ВО Ижевская ГСХА

ЭКСТЕРЬЕРНЫЕ ПРИЗНАКИ ПЧЕЛИНЫХ СЕМЕЙ УДМУРТСКОЙ РЕСПУБЛИКИ

Продуктивность, зимостойкость и устойчивость к неблагоприятным факторам среды пчелиных семей зависят от комплексного взаимодействия внутренних и внешних факторов. Своевременное применение подкормок, обогащенных биологически активными веществами, позволяет повысить жизнестойкость пчёл, получить экологически чистые продукты пчеловодства. Высокой биологической активностью обладает биофлавоноид — дигидрокверцетин (концентрат коры сибирской и даурской лиственницы); не являясь заменителем кормовых средств, он интенсифицирует их использование за счёт стимуляции пищеварительных процессов, воздействуя на углеводный, белковый, липидный и минеральный обмены . Целью исследований является анализ экстерьерных и продуктивных особенностей пчелиных семей в Удмуртской Республике при использовании дигидрокверцетина в весенний период.

В статье приводятся результаты морфометрического анализа пчёл по основным признакам — длине хоботка, длине и ширине правого переднего крыла, ширине трьетьего тергита, кубитальному индексу; определено положительное биокоррегирующее влияние дигидрокверцетина на повышение медовой продуктивности пчелиных семей в разных дозах — 5, 10, 15 мг / пчелиную семью.

Установлено, что использование дигидрокверцетина в количестве 15 мг в составе сахарного сиропа обеспечивает получение наибольшей медовой продуктивности: сбор валового мёда составил -38,1 кг в расчёте на одну пчелиную семью.

Ключевые слова: пчела, порода, экстерьер, медовая продуктивность, подкормка, дигидрокверцетин, длина хоботка, кубитальный индекс, валовый мёд.

Сведения об авторах:

Воробьёва Светлана Леонидовна – доктор сельскохозяйственных наук, профессор кафедры кормления и разведения сельскохозяйственных животных, проректор по научной и воспитательной работе ФГБОУ ВО ИжГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11, e-mail: vorobievasveta@mail.ru).

Васильева Марина Ивановна — кандидат сельскохозяйственных наук, доцент кафедры технологии производства и переработки продукции животноводства ФГБОУ ВО ИжГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11, e-mail: marinaroshya@gmail. com).

Якимов Дмитрий Витальевич – аспирант кафедры кормления и разведения сельско-хозяйственных животных ФГБОУ ВО ИжГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11).

Т.Е. Иванова, О.В. Любимова, Л.А. Несмелова, Е.В. Соколова, Т.Н. Тутова ФГБОУ ВО Ижевская ГСХА

ПОКАЗАТЕЛИ КАЧЕСТВА ОВОЩНЫХ КУЛЬТУР В ЗАВИСИМОСТИ ОТ ТЕХНОЛОГИИ ВЫРАЩИВАНИЯ

Приведены результаты исследований по изучению показателей качества овощных культур в зависимости от технологии выращивания в условиях открытого и защищённого грунта в почвенно-климатических условиях Удмуртской Республики. В задачи исследования входило изучение влияния сортов и гибридов овощных культур на пищевую ценность и выявление зависимости изменений качественных показателей от технологии выращивания. Исследования проводились в период с 2010 по 2017 гг. в условиях сельскохозяйственных производств различных категорий Удмуртской Республики, согласно «Методике полевого опыта» и «Основ научных исследований в агрономии». В качестве объектов исследования были взяты разные гибриды томатов, сортообразцы лука-шалота, озимого чеснока и редьки листовой, сорта лука-порея и салата листового. Изучаемые овощные культуры возделывали согласно принятым зональным технологиям. После сбора урожая проводилась качественная оценка продукции с определением биохимических показателей: содержание сухого вещества, витамина С, водорастворимых сахаров, нитратов. Результаты исследований выявили, что сорта, гибриды и технологии выращивания оказали влияние на показатели качества продукции овощных культур. Наилучшие показатели качества продукции выявлены при наименьшей густоте стояния растений редьки листовой в горшочке; выращивании сортов лука-порея Белый клык, салата листового Lancelot, сортообразца лука-шалота 3/16, гибрида томата F1 Тореро; использовании органических удобрений на озимом чесноке.

Ключевые слова: овощные культуры, сухое вещество, витамин С, водорастворимые сахара, нитраты.

Сведения об авторах:

Иванова Татьяна Евгеньевна – кандидат сельскохозяйственных наук, доцент кафедры плодоводства и овощеводства ФГБОУ ВО Ижевская ГСХА (426033, Российская Федерация, г. Ижевск, ул. Кирова, 16, e-mail: ivanova.tan13@yandex.ru, тел. 77-37-87).

Любимова Ольга Вячеславовна — доктор педагогических наук, доцент, профессор кафедры плодоводства и овощеводства ФГБОУ ВО Ижевская ГСХА (426033, Российская Федерация, г. Ижевск, ул. Кирова, 16, e-mail: lubimova.izh@gmail.com).

Несмелова Любовь Александровна — кандидат сельскохозяйственных наук, доцент кафедры плодоводства и овощеводства ФГБОУ ВО Ижевская ГСХА (426033, Российская Федерация, г. Ижевск, ул. Кирова, 16, e-mail: lubownecmelowa@yandex.ru)

Соколова Елена Владимировна — кандидат сельскохозяйственных наук, доцент кафедры плодоводства и овощеводства ФГБОУ ВО Ижевская ГСХА (426033, Российская Федерация, г. Ижевск, ул. Кирова, 16, e-mail: sokolowae@gmail.com).

Тутова Татьяна Николаевна — кандидат сельскохозяйственных наук, доцент кафедры плодоводства и овощеводства ФГБОУ ВО Ижевская ГСХА (426033, Российская Федерация, г. Ижевск, ул. Кирова, 16, e-mail: toutova@udm.ru).

ОСОБЕННОСТИ АГРОЭКОЛОГИЧЕСКОГО ИЗУЧЕНИЯ СОРТОВ И СОРТООБРАЗЦОВ ОЗИМОЙ ПШЕНИЦЫ В ВОЛГО-ВЯТСКОМ РЕГИОНЕ

Представлены результаты трёхлетнего агроэкологического испытания коллекции сортов и сортообразцов озимой пшеницы различного эколого-географического происхождения на светло-серых лесных почвах Нижегородской области. Установлено, что урожайность изучаемых сортов и сортообразцов находилась в интервале от 5,39 т/га (средняя у стандартного сорта Московская 39) до 6,41 и 6,88 т/га (сорт Немчиновская 57 и сортообразец КС-202). Эти сорта, а также Немчиновская 17, КП 597, КС 31 имели урожайность достоверно выше стандартного сорта соответственно на 1,02; 0,96; 1,49; 0,93; 1,0 т/га или на 18,9; 27,6; 17,2; 18,5 %. Выявлено, что на формирование урожая значительное влияние оказывают погодные условия, особенно в период всходов, перезимовки, формирования и налива зерна. Отмечено, что статистически доказываются различия изучаемых сортов по основным элементам структуры урожая, таким как количество колосков в колосе, количество зёрен в колосе, масса зерна с колоса. Максимальное количество колосков в колосе выявлено у сортов Немчиновская 17, Немчиновская 57, Московская 39 - 15,8 и 15,7 шт. Высокой озернённостью колоса (33,6; 32,9; 32,8 шт.) отличились сорта и сортообразцы Немчиновская 57, КС 202, Московская 40, которые превышали сорт Московская 39 на 11,1; 9,3; 8,6 %. Наибольшая масса зерна с колоса отмечена у сортов Немчиновская 17, Немчиновская 57, КС 202 – 1,85 и 1,82 г, у которых она была больше контроля на 15,6 и 13,8 %. Показатели качества зерна изучаемых сортов изменялись следующим образом : содержание белка варьировалось от 15,5 % у сорта Памяти Федина до 19,5 % у сорта Московская 40. У стандартного сорта этот показатель составлял 17,3 %. По содержанию клейковины, как и белка, достоверно выделился только сорт Московская 40 с содержанием искомых ингредиентов соответственно 36,1 и 19,5 %. Расчёт биологической урожайности показал высокий потенциал изучаемых в опыте сортов – 10,30 т/га у Немчиновской 17; 10,13 т/га у Немчиновской 57; 10,16т/га у Московской 56; 9,83 т/га у сортообразца КС 202, что выше стандартного сорта на 2,03; 1,86; 1,89; 1,56 т/га или на 24,5; 22,5; 22,8; 18,9 %. Значительную устойчивость к перезимовке, листовым болезням и болезням выпревания проявили в основном сорта, отмеченные выше, - Немчиновская 57, Немчиновская 17, Московская 56, Московская 40. В целом, по основным хозяйственно ценным признакам (урожайность, содержание белка и клейковины, устойчивость к определяемым болезням) выделились сорта озимой пшеницы Немчиновская 57, Немчиновская 17, сортообразец КС 202.

Ключевые слова: озимая пшеница, сорта, урожай, структура урожая, белок, клейковина, болезни растений.

Сведения об авторах:

Петров Леонид Кириллович – кандидат сельскохозяйственных наук, старший научный сотрудник отдела селекции и семеноводства Нижегородского научно-исследовательского института сельского хозяйства – филиала ФГБНУ ФАНЦ Северо-Востока (607686, Российская Федерация, Нижегородская область, Кстовский район, с. п. Селекционной станции, д. 38, e-mail: nnovniish@rambler.ru; petrovlk@mail.ru).

М.И. Файзуллин, А.Г. Иванов, Е.В. Максимова, Т.В. Бабинцева ФГБОУ ВО Ижевская ГСХА

ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ НАВОЗА В ХОДЕ АЭРОБНОГО КОМПОСТИРОВАНИЯ

Утилизация отходов животноводческих ферм всегда являлась острой проблемой. Те очистные сооружения, которые существуют сегодня на фермах, находятся в непригодном состоянии. Перспективной и энергоэффективной технологией является искусственная вентиляция навозного бурта (метод принудительной аэрации навоза при компостировании). Обеспечение внутренних объёмов навозного бурта кислородом обеспечивает ускоренное развитие аэробных бактерий, в процессе жизнедеятельности которых происходит интенсивное нагревание продукта вплоть до температур 60...70 °C. За счёт этого происходит уничтожение болезнетворной микрофлоры и самообеззараживание навоза в течение 1...2 месяцев. Задачи: провести лабораторные микробиологические исследования соломонавозной смеси при принудительной аэрации навоза в процессе компостирования; определить состав патогенной микрофлоры в соломонавозной смеси. Методы исследования: для гельминтоовоскопических исследований материала применяли метод последовательных промываний и флотации; для гельминтоларвсоскопии использовали упрощённый метод Бермана. Результаты исследования: в навозе содержится много органических соединений, поэтому он является благоприятной средой для развития различных микроорганизмов. В навозе всегда находятся микроорганизмы, принимающие участие в почвообразовательных процессах, а именно: аммонифицирующие, нитрифицирующие, денитрифицирующие, клетчаткоразлагающие или целлюлозоразлагающие, азотфиксирующие бактерии, актиномицеты, плесневые грибы. Кроме перечисленных микроорганизмов, в навозе всегда есть представители нормальной микрофлоры желудочнокишечного тракта животных, такие как кишечная палочка, энтерококки, большая группа молочнокислых бактерий, клостридий. Некоторые из них могут являться возбудителями болезней. Следовательно, с навозом в почву попадает огромное количество полезных микроорганизмов, что значительно усиливает микробиологические процессы в почве. Навоз приобретает свойства органического удобрения благодаря жизнедеятельности микробов. Состав навоза непостоянен, он зависит от соотношения в нём твёрдых и жидких выделений, количества и качества корма, вида животных и других факторов. Анализ навоза КРС выявил значительное содержание в нём грибковых и спорообразующих микроорганизмов.

Таким образом, проведён лабораторный анализ проб навоза, исследование влажности навоза, гельминтологическое и бактериологическое исследование навоза. В процессе перепревания навоза в нём развиваются многие патогенные микроорганизмы. Однако при обеспечении микроорганизмов в толще навоза воздухом происходит самосогревание соломонавозной смеси до температур 60...70 °C, что приводит к самообеззараживанию навоза. Для обеспечения высокого качества продукта предлагается внедрить систему автоматизированного контроля параметров (влажность и температура) и управления процессом нагнетания воздуха.

Ключевые слова: навоз, микробиология, лабораторный анализ проб, аэрация, принудительная вентиляция, микрофлора, бактерии, плесневые грибы.

Сведения об авторах:

Файзуллин Марат Ильгизович — аспирант ФГБОУ ВО Ижевская ГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11, e-mail: faizullin12@mail.ru).

Иванов Алексей Генрихович — кандидат технических наук, доцент, заведующий кафедрой теоретической механики и сопротивления материалов ФГБОУ ВО Ижевская ГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11, e-mail: ivalgen@inbox.ru).

Максимова Елена Вениаминовна – кандидат ветеринарных наук, доцент, заведующий кафедрой инфекционных болезней и патологической анатомии ФГБОУ ВО Ижевская ГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11).

Бабинцева Татьяна Викторовна – ветеринарный врач ФГБОУ ВО Ижевская ГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11).

М.Б. Шарафисламова, Е.В. Шабалина, В.Б. Милаев ФГБОУ ВО Ижевская ГСХА

ОСОБЕННОСТИ СОВРЕМЕННОЙ ЛАБОРАТОРНОЙ ДИАГНОСТИКИ ХРОНИЧЕСКОЙ БОЛЕЗНИ ПОЧЕК

В данной статье рассмотрены различные методы диагностики хронической болезни почек у кошек и собак. Приводятся особенности диагностики того или иного метода, плюсы и минусы. Проанализированы особенности разных методов диагностики, таких как анализ мочи, включая химическое исследование образца, микроскопию осадка мочи и соотношение белок/креатинин в моче. Обозначены различные причины протеинурии, цилиндрурии и лейкоцитурии. Исследование сыворотки крови на «почечные показатели»: креатинин, мочевина, цистатин С. Обозначены причины повышения и понижения креатинина и мочевины, приведены особенности изменения уровня креатинина и мочевины в зависимости от породы собаки, возможного снижения массы тела животного и наличия сопутствующих патологий. Обозначено исследование на такой параметр, как цистатин С, и выявлено, что данных по нему пока очень мало, необходимы дополнительные исследования в этом направлении. А также рассмотрен и обоснован совершенно новый диагностический тест хронической болезни почек – это тест на симметричный диметиларгинин (СДМА), который строго специфичен для ткани почек, на который не влияют порода животного, его вес, возможные потери мышечной массы и другие физиологические аспекты животного. Приведён клинический пример собаки с нормальным уровнем креатинина и, как оказалось, повышенным уровнем симметричного диметиларгинина, что с абсолютной точностью указывает на хроническое заболевание почек.

Ключевые слова: хроническая болезнь почек, почки, заболевания почек, анализ мочи, протеинурия, цилиндрурия, креатинин, мочевина, цистатин С, СДМА.

Сведения об авторах:

Шарафисламова Мария Борисовна — ассистент кафедры внутренних болезней и хирургии ФГБОУ ВО Ижевская ГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11, e-mail: 3412680609@mail.ru).

Шабалина Екатерина Вячеславовна – кандидат ветеринарных наук, доцент кафедры внутренних болезней и хирургии ФГБОУ ВО Ижевская ГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11, e-mail: katerinavet@mail.ru).

Милаев Вячеслав Борисович – кандидат ветеринарных наук, профессор кафедры внутренних болезней и хирургии ФГБОУ ВО Ижевская ГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11, e-mail: 3412680609@mail.ru).

РОЛЬ РОДСТВЕННОГО ПОДБОРА В СОВЕРШЕНСТВОВАНИИ ПРОДУКТИВНЫХ И НАСЛЕДСТВЕННЫХ КАЧЕСТВ КРУПНОГО РОГАТОГО СКОТА

Накопленный в наше время богатый опыт по использованию инбридинга в племенной работе со многими видами сельскохозяйственных животных позволил всесторонне и более объективно подойти к оценке инбридинга, определить его место в системе племенной работы современного индустриализированного животноводства. Чтобы правильно оценить эффективность применения инбридинга, должны быть, прежде всего, изучены результаты племенного использования инбредных животных. Исследования проводились в стаде крупного рогатого скота племенного завода АО «Путь Ильича» Завьяловского района Удмуртской Республики. Материалом для исследований служили карточки племенных коров формы 2-МОЛ, данные записей зоотехнического и племенного учёта. Среди изучаемого поголовья были выделены животные, полученные при использовании родственного и неродственного спаривания (инбридинга и аутбридинга). Инбредные особи классифицировались в зависимости от степени и типов инбридинга. Степень инбридинга определялась согласно методу Пуша – Шапоружа и коэффициенту инбридинга по формуле Райта – Кисловского. В зависимости от типов инбридинга животные были разделены на группы, полученные в результате простого, сложного и комплексного инбридинга; в зависимости от типов инбридинга – на внутрилинейный инбридинг, инбридинг на линию матери и инбридинг на посредника. Результаты исследований позволили выявить, что коровы, полученные в результате использования родственного спаривания, превосходят своих аутбредных сверстниц по удою на 197,3 кг или 3,9 % (Р≥0,95), но несколько уступают аутбредным полусёстрам на 25,2 кг или 0,5 %. Сложный и комплексный инбридинг оказывает положительное влияние на удой, животные данных группы превосходят коров, полученных при простом инбридинге на 218,7 кг или 4,6 % ($P \ge 0.95$) и на 669,5 кг или 13,6 % ($P \ge 0.999$) соответственно. Коэффициент наследуемости удоя аутбредных животных составил 0,44, у инбредных особей и их аутбредных полусестёр коэффициент наследуемости удоя значительно выше – 0,68 и 0,72 соответственно.

Ключевые слова: инбридинг, аутбридинг, племенной подбор, метод Пуша — Шапоружа, формула Райта — Кисловского, степень инбридинга, коэффициент гомозиготности, популяция, панмиксия, порода, чёрно-пёстрый скот.

Сведения об авторе:

Юдин Виталий Маратович — кандидат сельскохозяйственных наук, доцент кафедры кормления и разведения сельскохозяйственных животных, ФГБОУ ВО Ижевская ГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11, e-mail: vitaliyiudin@yandex.ru).

ТЕХНИЧЕСКИЕ НАУКИ

Н.П. Кондратьева, И.Р. Владыкин, И.А. Баранова, С.И. Юран, В.А. Баженов ФГБОУ ВО Ижевская ГСХА

СОВЕРШЕНСТВОВАНИЕ СИСТЕМ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ ОСВЕЩЕНИЯ В ПТИЦЕВОДСТВЕ

Дан краткий обзор развития систем освещения в птицеводческих помещениях. Обоснован выбор применения автоматических систем регулирования освещения в птичнике на основе светодиодных светильников. Приведён пример реализации автоматической системы управления освещением в птичнике для конкретного варианта выращивания птицы (кросс РОСС 308), в которой предусмотрен автоматизированный режим управления освещённостью в процессе выращивания и содержания птицы.

В разработанной автоматической системе реализованы стабилизирующий и программный алгоритмы функционирования. Первый алгоритм обеспечивает поддержание заданного значения освещённости, второй — требуемое изменение освещённости в процессе выращивания птицы. В качестве микроконтроллера выбран ПЛК 63, наличие широкого перечня дополнительных функций у которого позволяет управлять большим количеством светодиодных установок и использовать достаточное количество датчиков освещённости для обеспечения равномерного распределения светового потока по всей площади птичника. Подробно описана программа работы микроконтроллера. Для проверки работоспособности программы была разработана её визуализация. Приведены программы в режиме плавного нарастания освещённости и смены светового режима. Визуализация позволяет оператору следить за показаниями освещённости в данный момент времени, а также контролировать остальные параметры, выведенные на экран монитора. Высокая точность регулирования освещённости и плавное её изменение в режимах закат/рассвет обеспечивается использованием блока с ПИД-регулированием. Управление светодиодами светильников осуществляется с помощью последовательности импульсов ШИМ.

Предложенный подход построения данной системы позволяет использовать его для создания многих других систем автоматического регулирования освещения, в том числе со сложными алгоритмами прерывистого освещения в соответствии с многообразием современных технологий выращивания птицы.

Ключевые слова: управление освещением, ПИД-регулирование, птицеводческое помещение, родительское стадо, система автоматического регулирования, алгоритмы прерывистого освещения, световой режим.

Сведения об авторах:

Кондратьева Надежда Петровна – доктор технических наук, профессор, зав. кафедрой автоматизированного электропривода ФГБОУ ВО Ижевская ГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11, e-mail: aep_isha@mail.ru).

Владыкин Иван Ревович — доктор технических наук, доцент кафедры автоматизированного электропривода ФГБОУ ВО Ижевская ГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11, e-mail: aep-ivan@mail.ru).

Баранова Ирина Андреевна – кандидат физико-математических наук, доцент кафедры автоматизированного электропривода ФГБОУ ВО Ижевская ГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11, e-mail: zykina i@mail.ru).

Юран Сергей Иосифович – доктор технических наук, профессор кафедры автоматизированного электропривода ФГБОУ ВО Ижевская ГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11, e-mail: yuran-49@yandex.ru).

Баженов Владимир Аркадьевич – кандидат технических наук, доцент кафедры автоматизированного электропривода ФГБОУ ВО Ижевская ГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11).

С.Н. Шмыков, Л.Я. Новикова ФГБОУ ВО Ижевская ГСХА

ДИНАМИКА РАЗВИТИЯ СОВРЕМЕННЫХ АНТИФРИКЦИОННЫХ МАТЕРИАЛОВ ДЛЯ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ В РОССИИ

В работе проанализирован российский сегмент производства подшипников скольжения на основе антифрикционных материалов. В результате анализа выявлены основные производители данной продукции, номенклатура товарной продукции, её применение в машиностроении. Определено, что за последние пять лет в России сократилось производство подшипников скольжения, что во многом определяется спадом машиностроительного производства и введенными экономическими ограничениями со стороны зарубежных стран. При этом в динамике наблюдается увеличение ввозимых в страну готовых подшипников скольжения из стран Азии и Европы. За последние три года доля импортируемой продукции на основе антифрикционных материалов увеличилась с 16 % в 2015 г. до 24 % в 2017 г. Динамика увеличения ввозимой продукции из-за рубежа из года в год неуклонно растет, несмотря на попытки министерства промышленности усилить работу по импортозамещению. Объяснением может послужить невостребованность производимой продукции отечественными предприятиями, во многом использующими технологии получения антифрикционных материалов советской эпохи. В частности, для российских подшипников скольжения используются антифрикционные покрытия на основе металлических сплавов в виде баббитов и бронз, которые обладают высокими триботехническими показателями в узком диапазоне свойств, что ограничивает их применение в большинстве узлов машин и механизмов, эксплуатирующихся при значительных динамических, кинематических и термических нагрузках. Однако за последние годы в России реализуются технологии получения тонких антифрикционных покрытий для подшипниковых узлов машин и механизмов на основе металлполимерных композиций, с использованием высококонцентрированных источников энергии. Физико-механические и эксплуатационные свойства создаваемых покрытий, по последним данным, значительно превосходят стандартные покрытия.

Ключевые слова: антифрикционный материал, подшипник скольжения, рынок подшипников скольжения, номенклатура продукции, металлическая композиция, лазерная обработка.

Сведения об авторах:

Шмыков Сергей Николаевич — кандидат экономических наук, доцент кафедры эксплуатации и ремонта машин ФГБОУ ВО Ижевская ГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11).

Новикова Лилия Яннуровна — кандидат сельскохозяйственных наук, доцент кафедры эксплуатации и ремонта машин ФГБОУ ВО Ижевская ГСХА (426069, Российская Федерация, г. Ижевск, ул. Студенческая, 11).